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Background

• Beamforming

– Power Gain

– Adjust phase (“beamweights”)

– Leverages Interference

• Open-loop

– Pre-compute weights to specify direction

• Closed-loop (adaptive)

– Use channel state information (CSI) to target receivers
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Background

• Single-user beamforming (SUBF)

• Multi-user beamforming (MUBF)
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The CSI is then calculated at the 
terminal and sent back to the BS
A pilot is sent from each BS antenna

Background: Channel Estimation
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Align the phases at the receiver to 
ensure constructive interference

For uplink, send a pilot from the
terminal then calculate CSI at BS
(Channels are not reciprocal)

Path Effects (Walls)

Tx

Rx

Tx

Rx
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Uplink?
Due to environment and terminal 
mobility estimation has to occur 
quickly and periodically
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MUBF linear pre-coding: downlink
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MUBF linear pre-coding: uplink
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First large-scale beamforming
base station
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Overview of contributions

• Scalable architecture

• Internal reciprocity calibration

• Novel fully distributed beamforming method
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Can beamforming scale with the 
number of base station antennas?



Not with current techniques!

• CSI acquisition
– Typically requires # of base station (BS) antennas (M) 

+ # of terminals (K) pilots

• Weight calculation
– All existing methods have centralized data 

dependency

– Requires M*K channel estimates and produces M*K 
weight values

• Linear pre-coding
– Produces M data streams

15



With careful design and new 
techniques it can!

• CSI Acquisition

– Leverage TDD reciprocity to limit pilots to K

– Requires calibration

• Weight Calculation

– Novel decentralized weight calculation

• Linear Pre-coding

– Apply weights at radio

– For uplink combine streams any time they meet
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Scalable linear pre-coding
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MUBF linear pre-coding: uplink
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Scalable linear pre-coding
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Ramifications

• CSI and weights are computed and applied (linear 
pre-coding) locally at each BS radio
– No overhead for additional BS radios

• No central data dependency
– No latency from data transport

– No stringent latency requirements

– Constant data rate common bus (no switching!)

• Unlimited scalability!
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• Scalable

– Support thousands 
of BS antennas

• Cost-effective

– Cost scales linearly 
with # of antennas

• Reliable
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How do we design it?

• Daisy-chain (series)
– Unreliable
– Large end to end latency

• Token-ring / Interconnected
– Not amenable to linear pre-coding
– Variable Latency
– Routing overhead
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• Flat structure
– Un-scalable
– Expensive, with large fixed cost



Solution: Argos

• Modular

– Daisy-chainable

– 1 or more radios

• Hierarchal

– Increases Reliability

– Constrains Latency

– Cost-effective
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Scalability of Argos

• Scalable in 4 directions:
– # of Radios per Module
– # of Modules per Chain
– # of ports per Hub
– # of Hubs (and levels)

• Reliable
– Branches can fail without affecting other branches
– Central hubs can be easily made redundant

• Accommodates linear pre-coding
– Add samples together at every junction
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Implementation
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Overview of contributions

• Scalable architecture

• Internal reciprocity calibration

• Novel fully distributed beamforming method
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Channel reciprocity
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Calibration coefficients

• Given the complete channel:

• We define a calibration coefficient as:

• Thus:
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Applying to large-scale BS

• Find A between each BS antenna and a 
reference antenna (1)

• Every BS radio listens to terminal pilot

• Find A between reference and terminal

• We can derive 

• Now every h can be found via 
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Key observation

• But this requires K+1 pilots…
– Even worse, it requires feedback

• A constant phase shift across the entire array 
does not alter the beampattern!

• Assuming                   results in a constant phase 
offset, and thus does not affect radiation pattern

mttmtm hAh  

11 tA
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Internal calibration

• We find all            offline

– They are static, and can be found quickly

• Send K orthogonal pilots to find all

– Used for uplink beamforming directly

• Use                         for downlink beamforming
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Overview of contributions

• Scalable architecture

• Internal reciprocity calibration

• Novel fully distributed beamforming method
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Problem with existing methods

• Central data dependency

• Transport latency causes capacity loss

• Can not scale
– Becomes exorbitantly expensive then infeasible
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Conjugate beamforming

• Requires global power scaling by constant:

• Where, e.g.:

• This creates a central data dependency
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Local conjugate beamforming

• Scale power locally:

• Maximizes utilization of every radio
– More appropriate for real-world deployments

• Quickly approaches optimal as K increases
– Channels are independent and uncorrelated
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Results

• Huge Capacity Gains

• Performance linear with M and K

• Channel Calibration Stable

• Local conjugate indistinguishable from global
– Approaches optimality quickly with K
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Results: scaling M
Capacity vs. M, with K = 15
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Results: scaling K
Capacity vs. K, with M = 64
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Results: scaling K
Capacity vs. K, with M = 16
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Results: low power
Capacity vs. K, with M = 16
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Results: calibration stability
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Results: local conjugate

43



Future directions

• Find optimal tradeoff between zeroforcing and 
conjugate 

• Demonstrate network optimality
– Lower power reduces other-cell interference

– Leverage cooperative beamforming

• Investigate promising match with full duplex
– Leverage huge EIRP gains
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Conclusion

• First large-scale beamforming platform

– Real-world demonstration of manyfold capacity 
increase

• Devised novel architecture and techniques

– Unlimited Scalability
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